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Abstract 
The Pacific Islands Area – Prescribed Grazing Tool (PIA-PGT) is used by conservation planners 
to help ranchers balance grazing-animal stocking rate with available forage production. A critical 
component of this tool is the forage model that predicts yield for specific species and locations. 
The objective of this study was to test the accuracy and precision of the forage model of the 
current PIA-PGT, four other forage models, and the average of the five models’ yield predictions, 
referred to as the Ensemble model, against observed yield. Forage yield was observed for three 
grass species at five working pastures located on the islands of Hawaii and Molokai. Yield data 
was collected monthly over a two-year period and recorded as air-dry yield. The validation 
statistics percent bias, mean absolute error, and Nash-Sutcliffe Efficiency were calculated to 
assess model accuracy, precision and overall performance, respectively. The Ensemble model 
had the best overall performance at predicting forage yield and will be embedded into the PIA-
PGT. The newly modified PIA-PGT, will provide better information for conservation planners to 
help ranchers balance grazing-animal stocking rate with available forage production, avoid 
overgrazing and soil degradation, and promote healthy grazing lands across the Pacific Islands 
Area. 

Introduction 
Stocking rate, the number of grazing-animals per acre, is one of the most important factors to 
consider when implementing the conservation practice Prescribed Grazing. Applying the 
appropriate stocking rate on a pasture greatly reduces the risk of overgrazing and the consequent 
degradation of pasture grass and soil (Briske et al., 2011). Selecting the appropriate stocking rate 
relies heavily on accurately estimating the available forage production of a pasture.  
The current Pacific Islands Area-Prescribed Grazing Tool (PIA-PGT) provides conservation 
planners with estimated available forage production based on historical monthly air temperature 
and rainfall at a specific site (NRCS, 2024). However, the current tool uses one forage yield 
curve to calculate the available forage production for the 19 grass species that the Natural 
Resources Conservation Service (NRCS) recommends for the Pacific Islands Area. 
Consequently, the tool estimates available forage production of certain grass species better than 
others. The current model needs revision to improve forage yield predictions and available 



forage production estimates for all recommended species. Alternatively, there are four other 
forage yield models that are readily available that could also be incorporated into the tool: 1) The 
Pasture Groups from the NRCS soil survey; 2) the Range Type forage model; 3) the Hawaii 
Forage Production Estimator Tool, and 4) the EcoCrop model. Of these four models, three were 
created specifically for Hawaiian pastures.  
The NRCS soil survey of the Hawaiian Islands has estimated forage yield values for land units 
known as Pasture Groups (SCS Staff, 1972; SCS Staff, 1973). Soil surveyors estimated forage 
yield based on consultation with local experts, published data, ranch records and clipping studies, 
then assigned the estimates to soil series (Fortiner et al., 2017). The soil series with similar 
forage yields were placed in groupings called Pasture Groups. In a similar manner, Joe May 
(2014) assigned forage yield estimates and monthly yield curves to Major Land Resource Areas, 
called range types. The range type was characterized by the environmental conditions and the 
plant species in the area. Both the Pasture Groups and Range Type yield estimates are based on 
the environmental conditions, soil and climatic conditions of areas where forage grows. 
In contrast to the environment-based models, climate-based models were developed to predict 
forage yield solely from climatic conditions. Thorne (2011) estimated yield from monthly 
rainfall. The yield estimates were generated through linear regression of rainfall and forage yield 
data collected on three islands in Hawaii. Separate yield equations were developed for each 
island and an average equation for all other islands. This rainfall-based model was named the 
Hawaii Forage Production Estimator Tool (HFPET; Thorne and Hewlett, 2013). The EcoCrop 
model, developed by the United Nations’ Food and Agriculture Organization, produced a crop 
suitability index value that ranges from 0 to 1 based on air temperature and rainfall described by 
a linear-segmented curve (FAO, 2022). The suitability index was shown to have a weak, but 
positive, relationship to sorghum grain yield due to complexities of reproductive development 
(Ramirez-Villegas et al., 2013). Forage grasses, unlike grain sorghum, may be harvested during 
vegetative growth when yield has a strong relation to simple environmental factors such as 
temperature (da Silva et al., 2012). Since forage yield is produced during the vegetative phase 
and has a strong relation to air temperature, the EcoCrop model has the potential to predict 
forage yield of grass species better than a crop species that produces grain. The advantage of 
climate-based models is they can be applied to any location where climate data is available. 
The environment- and climate-based models estimate forage yield differently and that difference 
can be useful. Yield estimates from models may differ because the components and processes 
that are simulated differ among the models. Taking the mean of yields from a group of models 
that differ in these ways typically result in better accuracy and precision than any single model 
(Liu et al., 2019; Watling et al., 2015). The group of models in this study is referred to as the 
Ensemble model. 
The objective of this study was to improve the forage yield prediction capability of the PIA-PGT 
by evaluating the performance of the current PIA-PGT, Pasture Group, Range-Type, HFPET, 
EcoCrop, and Ensemble models against observed yield of three grass species at six locations in 
Hawaii. The three grass species were kikuyu (Pennisetum clandestinum), guineagrass (Urochloa 
maxima) and buffelgrass (Pennisetum ciliare). Kikuyu is found at elevations up to 6,000 feet 
while guineagrass occupies lower elevations (Fukumoto and Lee, 2003; Whitney et al., 1939). 
Buffelgrass was introduced to Hawaii in 1935 and grows in the dry lowlands (Hosaka and 
Carlson, 1957). The model that can better predict forage yield for these three species and 
environments across Hawaii will be embedded into the PIA-PGT. 



Materials and Methods 
Six sites across two islands within the State of Hawaii were selected for forage yield data 
collection under natural conditions to test the six forage yield models (Table 1). Four sites were 
located on the Island of Hawaii and two sites were on the Island of Molokai. All sites were 
working pastures except the site at the Hoolehua Plant Materials Center (HIPMC) on Molokai. 
The sites represent a broad range of temperatures, rainfall and soils (Table 1). Well-established 
stands of pure guineagrass, kikuyu or buffelgrass were found at these locations. Before yield data 
collection started, a composite soil sample from each site was collected to a depth of six inches 
and analyzed for pH and organic matter content. At each site, five plots were established 
randomly within the pasture. A 4ft x 4ft area at each plot location was fenced to prevent animal 
browsing. Forage samples were collected from each plot at the beginning of every month over a 
two-year period. A 2.4 feet2 hoop was placed within the fenced plot and all forage within the 
hoop was cut to the recommended stubble height. The recommended stubble heights for 
guineagrass, kikuyu and buffelgrass are 8, 4, and 3 inches, respectively (NRCS, 2018). Forage 
samples were air-dried to constant weight and recorded. Daily air temperature and rainfall data 
were obtained from the Soil Climate Analysis Network (SCAN; Schaefer et al., 2007) or on-site 
weather stations (model 1000 series, Spectrum Technologies, Aurora, IL). The weather data were 
summarized into monthly values and used to run the climate-based forage yield models. In 
August 2021, a large brushfire swept through the Waimea Plain area preventing data collection. 
Data collection was extended two months to capture a two-year period of monthly yield data. 

Table 1. Environmental description of six sites in Hawaii where forage yield data of three grass species were 
collected under natural conditions. 
Site Species Annual Annual Rain, Soil Great Organic Matter, 

Temp, F inches Group % 
Kukuihaele guinea 72 80 Haplustands 11 
Kainaliu guinea 68 55 Hydrudands 8 – 50 
Kainalu guinea 72 40 Palehumults 5 
HIPMC guinea, buffel 74 21 Eutrotorrox 3 
Waimea Plain kikuyu 63 40 Haplustands 10 
Mana House kikuyu 61 24 Haplustands 11 

The current PIA-PGT required monthly rainfall, and annual forage yield and pasture area to 
estimate monthly forage production. Rainfall was retrieved from the SCAN database or 
automatic weather logger. Annual forage yield was set to the average range production in a 
normal year for the Pasture Group at the site (SCS Staff, 1972; SCS Staff, 1973).  Additionally, 
the user is required to respond to two climate related questions: 1) Is water a limiting factor, and 
2) Does temperature suppress growth? If yes, estimate% of temperature suppression. Question 1 
was set to “YES” and Question 2 was set to “NO”. 
The Pasture Group was determined by identifying the soil series found at the forage yield data 
collection site through Web Soil Survey (Soil Survey Staff, 2019). The Pasture Group provided 
the annual forage yield during normal years and the distribution of the yield within a year (SCS 
Staff, 1972; SCS Staff, 1973). 
Range Type was determined by soil series at the site (May, 2014). The Range Type was 
associated with an annual yield for below-normal, normal and above-normal years. For model 
testing, normal year yield was used. The Range Type also provided a yield curve that defined the 
percentage of yield for each month within a year.  



The HFPET required monthly rainfall and the Hawaiian island where the site was located 
(Thorne and Hewlett, 2013). For the islands of Hawaii and Molokai, forage yield was set to 96 
and 150 lbs. acre-1 for every inch of rain per month, respectively. 
EcoCrop required the species-specific parameters that described suitability relative to 
temperature and rainfall, monthly rainfall and temperature, and potential annual forage yield to 
estimate monthly yield. Species-specific parameters were obtained from the EcoCrop database 
and defined the linear segmented curve (FAO, 2022). Potential annual forage yield for 
guineagrass, kikuyu and buffelgrass were obtained from the Feedipedia: Animal feed resources 
information system (INRAE CIRAD AFZ and FAO, 2022). The potential annual forage yield 
was evenly distributed to each month and multiplied by the suitability index derived from a site’s 
monthly temperature and rainfall to obtain the monthly forage yield (Ramirez-Villegas et al., 
2013). 
Ensemble yield prediction was calculated as the mean average of yields from the PIA-PGT, 
Pasture Group, Range Type, HFPET, and EcoCrop (Liu et al., 2019; Watling et al., 2015). Model 
performance was evaluated by comparing predicted and observed forage yields.  
Accuracy of the predicted yield was measured as Percent Bias (Moriasi et al., 2007). A positive 
percent bias indicated that the model generally under-predicted yields while a negative bias 
indicated over-predicting yields. A percent bias of 0.0 meant predicted yield perfectly matched 
observed. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
∑ (𝑌𝑌𝑌𝑌𝑌𝑌𝐵𝐵𝑃𝑃𝑃𝑃𝑌𝑌𝑃𝑃𝑌𝑌𝑖𝑖 − 𝑌𝑌𝑌𝑌𝑃𝑃𝑃𝑃𝑌𝑌𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝑌𝑌𝑖𝑖)  × 100𝑛𝑛
𝑖𝑖=1

∑ 𝑌𝑌𝑌𝑌𝑌𝑌𝐵𝐵𝑃𝑃𝑃𝑃𝑌𝑌𝑃𝑃𝑌𝑌𝑖𝑖𝑛𝑛
𝑖𝑖=1

 

Yobservedi = Observed yield for observation i 
Ypredictedi = Predicted yield for prediction i 
n = number of observations, i.e., sites, months and species 

Precision of the predicted yield was measured as Mean Absolute Error (MAE; Moriasi et al., 
2007). MAE ranges from 0 to ∞ where lower values indicated better precision. 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
∑ |𝑌𝑌𝑌𝑌𝑌𝑌𝐵𝐵𝑃𝑃𝑃𝑃𝑌𝑌𝑃𝑃𝑌𝑌𝑖𝑖 − 𝑌𝑌𝑌𝑌𝑃𝑃𝑃𝑃𝑌𝑌𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝑌𝑌𝑖𝑖|𝑛𝑛
𝑖𝑖=1

𝑃𝑃
 

    Yobservedi = Observed yield for observation i 
    Ypredictedi = Predicted yield for prediction i 
    n = number of observations, i.e., sites, months and species 

The Nash-Sutcliffe Efficiency (NSE) is an overall statistic that measured “noise” to 
“information” ratio. NSE ranges from -∞ to 1.0 where a value of 1.0 indicated predicted yield 
perfectly matched observed. Values between 0.0 and 1.0 generally indicated satisfactory model 
performance (Moriasi et al., 2007). 

𝑁𝑁𝑁𝑁𝑀𝑀 =  
∑ (𝑌𝑌𝑌𝑌𝑌𝑌𝐵𝐵𝑃𝑃𝑃𝑃𝑌𝑌𝑃𝑃𝑌𝑌𝑖𝑖 −  𝑌𝑌𝑌𝑌𝑃𝑃𝑃𝑃𝑌𝑌𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝑌𝑌𝑖𝑖)𝑛𝑛
𝑖𝑖=1

2

∑ (𝑌𝑌𝑌𝑌𝑌𝑌𝐵𝐵𝑃𝑃𝑃𝑃𝑌𝑌𝑃𝑃𝑌𝑌𝑖𝑖 −  𝑌𝑌𝑌𝑌𝑃𝑃𝐵𝐵𝑃𝑃)𝑛𝑛
𝑖𝑖=1

2  

    Yobservedi = Observed yield for observation i 
    Ypredictedi = Predicted yield for prediction i 
    n = number of observations, i.e., sites, months and species 
    Ymean = mean of observed yields 



Results 
The measured soil chemical properties and weather parameters showed large variation in 
environmental conditions that led to large variation in forage yield. Soil pH ranged from 5.5 to 
7.2 while soil organic matter showed a particularly large range from 2.5 to 19.3% (Table 2). 
Annual air temperature ranged from 60 to 76 °F and annual rainfall was 11 to 66 inches (Table 
3). Annual forage yield had a correspondingly large range from 1073 to 30317 air-dry lbs. acre-1. 
Monthly forage yield and weather data may be found in the Appendix. This wide variation of 
environmental conditions and forage yields provided a robust test for the forage yield models. 

Table 2. Soil chemical properties (0 – 6 inch depth) analyzed at six locations in Hawaii where monthly forage 
yield was measured over a two-year period. The chemical properties at Mana House were estimated from Web 
Soil Survey (WSS). 

Location pH Organic matter, % 

Kukuihaele 5.5   6.1 

Kainaliu 6.0 16.5 

Kainalu 6.1   3.9 

HIPMC 6.6   2.5 

Waimea Plain 

Mana House 

6.7 19.3 

            7.2 (WSS)            10.0 (WSS) 
 

Table 3. Annual weather and forage yield data collected at six locations in Hawaii. 
 Air Temperature, °F Rainfall, inches  Forage Yield, air-dry lbs. 

acre-1 
Location Year 1 Year 2 Year 1 Year 2 Year 1 Year 2 
Kukuihaele 71 70 54 59 6328 4502 
Kainaliu 70 71 66 49 30317 26474 
Kainalu 76 76 41 30 9467 6920 
HIPMC 75 75 15 11 2142 1073 
Waimea Plain† 63 62 18 16 8496 5936 
Mana House 60 60 15 20 1304 2158 
† Missing yield data in August 2021 due to large brushfire were replaced by extending yield data collection for 
two months that ended June 2022. 

The Ensemble model had better accuracy and precision to predict forage yield than the other 
models. All models had a positive percent bias that meant they generally under-predicted forage 
yield (Table 4). EcoCrop was the most accurate model with a percent bias of 10% (Table 4). 
Ensemble and Range Type were the second most accurate at 34%. Ensemble forage predictions 
had greater precision than the other models as measured by MAE at 426 lbs. acre-1 followed by 
PIA-PGT and HFPET (Table 4). The general performance statistic NSE was greatest for 
Ensemble at 0.23 with HFPET and PIA-PGT behind (Table 4). Overall, the Ensemble was the 
best model to predict forage yield with its superior precision and general performance over the 
other models, and better accuracy with the exception of EcoCrop. 
The under-prediction of forage yield was most pronounced at sites with high soil organic matter 
content. All six models tended to under-predict forage yield as seen by their positive percent bias 
(Table 4). Visual inspection of the plot predicted v. observed forage yield showed the under-



prediction is especially noticeable at sites Kainaliu and Waimea Plain (Figure 1). These two sites 
have high soil organic matter content at 16.5 and 19.3% (Table 2). None of the six models have a 
soil organic matter component that would make the forage yield responsive to this factor and 
may account for their lapse in prediction capability. 
The HFPET and EcoCrop models displayed a specific type of under-prediction that may be due 
to the lack of a soil water component. In the charts that compare predicted and observed monthly 
forage yield, HFPET and EcoCrop showed instances where the model predicted yield to be 0, but 
a significant yield was observed (Figure 1). In many of these instances, rainfall during the month 
was either 0, for HFPET, or low, for EcoCrop, so the models predicted no yield. The observed 
yield was presumably supported by soil water which was not accounted for in either model and 
may have caused the under-predictions. 
The wide-ranging environments and grass species in this study were able to discriminate 
between the better performing models from poorer performers. The Ensemble model had best 
overall performance. The test also showed the shortcomings of the poorer performing models 
such as lack of soil organic matter and soil water components and identified an approach to 
improve the climate-based models. 

Table 4. Percent bias (% Bias), mean absolute error (MAE) and Nash-Sutcliffe efficiency (NSE) statistics of six 
forage model yield predictions for three grass species and six sites in Hawaii. 
 PIA-PGT HFPET EcoCrop Pasture Group Range Type Ensemble 
% Bias 41 46 10 41 34 34 
MAE 477 485 643 513 534 426 
NSE 0.03 0.15 -0.370 -0.01 -0.06 0.23 

 

 

 

 

 

 

 



      

      

      
Figure 1. Comparison of predicted and observed monthly forage yield for six models.  All models under-predicted 
monthly forage yield, primarily due to the sites Kainaliu and Waimea Plain. 
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Discussion 
Multi-model ensembles are commonly used in weather and climate forecasting because they 
have better predictive capabilities than most or all individual models within the ensemble 
(Hagedorn, 2005). The better performance results from weather forecasting models simulating 
different processes, i.e., the models are independent and display improved prediction skill under 
certain circumstances. The error cancellation among the various model predictions improves the 
overall prediction of the ensemble (Hagedorn, 2005). In other words, the skillful model, under a 
certain circumstance, pulls the predictions of the less skilled model toward the observed value. 
Under a different circumstance, the previously less skilled model may become the better skilled 
model and pull predictions of the less skilled model toward the observed. The independence and 
skill of the forage models are apparent in the present study. The independence of the models can 
be seen in the pattern of the predicted vs. observed yield (Figure 1). The patterns result from the 
model error and show little commonality indicating independence. The skill of each model can 
be seen in the data points that fall on or near the 1:1 line under certain circumstances (Figure 1). 
Since all five forage models show independence and skill, it follows that the Ensemble would 
have better accuracy and precision in predicting forage yield than its constituent models. 
While the Ensemble model performed better than any single model including the PIA-PGT, the 
Ensemble still under-predicted forage yield. One approach to better the Ensemble is to improve 
the constituent models. For example, the climate models, EcoCrop and HFPET, predicted no 
yield when there was significant yield observed; indicated by data points falling on the lower 
portion of the x-axis (Figure 1). Many of these mis-predictions happened when there was little or 
no rain during the month, but forage yield was observed. It is well known that stored soil water is 
able to support forage growth for several months (Budisantoso et al., 2008; Cullen and Johnson, 
2012; Dahl, 1963). Presumably, the forage grass in this study was able to produce a yield from 
stored soil water without rain. Including a soil-water component to the climate-oriented model 
would account for yield produced from soil-water without rain and improve the overall 
prediction. Another approach to improve the climate models is to include a soil organic matter 
component. All forage models under-predicted yield at sites where soil organic matter was high, 
in particular Kainaliu and Waimea Plain (Figure 1). Other researchers have found a strong 
positive correlation between soil organic matter and forage yield (Miranda et al., 2021). So, 
adding a soil organic matter component that modulates forage yield would help capture the wide 
range of forage yield observed in pastures across Hawaii. 
Another way to improve the Ensemble model is to modify its structure rather than the constituent 
models. Wallach et al. (2016) proposed several changes to improve crop multi-model ensembles 
including: 

1. Select models to be included in the multi-model ensemble based on pre-determined 
criteria such as model performance. Eliminating the poorer performing models could 
improve the ensemble. 

2. Assign weights to single model outputs, where heavier weight is given to better 
performing models, so the overall result is a weighted average. Assignment of weights 
could be accomplished with methods such as Bayesian model averaging. 

3. Create a multi-model ensemble by changing the parameters of a single model, known as 
perturbed physics ensemble. Each set of changed parameters is considered a separate 
model. 



Any of these modifications separately or in combination could improve the accuracy and 
precision of the Ensemble model. A better Ensemble model would better help balance forage 
production and animal demand that would ultimately avoid overgrazing and soil degradation. 

Conclusions 
Out of six forage yield models tested, the Ensemble model performed the best overall. The 
Ensemble yield predictions had higher accuracy and precision than many of the other models in a 
test that compared model outputs against observed yield. This is consistent with weather and 
climate forecast models that are commonly ensembles, rather than single models, because of the 
ensemble’s superior performance.  
Opportunities to improve the ensemble model were identified in this study. The inclusion of soil 
organic matter and soil water components into the climate models could reduce obvious mis-
predictions of forage yield at sites where organic matter content is high or when little to no rain 
falls during a month. Modifying the constituent climate models would also improve the yield 
predictions and overall Ensemble performance. 
As a result of this study, the Ensemble model will be embedded in the PIA-PGT. With the newly 
modified PIA-PGT, conservation planners and ranchers will be able to better assess forage 
production at a specific site to better advise on the stocking rate that may reduce overgrazing, 
prevent soil degradation and promote healthy ecosystems across the Pacific islands. 
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Appendix. Forage yield and climate for six sites on the Islands of Hawaii and Molokai, Hawaii, 
2020 to 2023. 

1. Kukuihaele, Island of Hawaii, guineagrass, initial cut date 5/5/2020 

Harvest date 

6/2/2020 

6/30/2020 

8/4/2020 

9/1/2020 

10/6/2020 

11/4/2020 

12/2/2020 

1/5/2021 

2/10/2021 

3/3/2021 

4/6/2021 

5/4/2021 

6/2/2021 

7/2/2021 

8/4/2021 

9/1//2021 

10/4/2021 

11/1/2021 

12/1/2021 

1/3/2022 

2/1/2022 

3/1/2022 

3/31/2022 

5/5/2022 

5/31/2022 

6/29/2022 

8/1/2022 

Air temp, °F Rain, inches Forage Yield, air-dry 
lbs. acre-1 

70.2 4.17 568 

71.4 0.97 563 

72.0 3.16 1611 

72.6 1.93 722 

73.3 2.94 1434 

73.3 1.65 882 

71.2 9.97 604 

70.2 3.99 582 

67.8 6.95 440 

68.4 0.65 320 

67.4 7.77 352 

68.0 2.37 399 

70.6 1.77 413 

71.7 1.34 400 

72.2 8.57 448 

72.2 5.85 681 

72.2 3.21 808 

70.3 6.25 528 

70.0 1.56 440 

68.5 8.36 296 

67.9 2.29 184 

67.8 4.63 128 

69.0 4.15 408 

69.0 14.37 432 

70.4 1.56 400 

71.1 4.13 432 

72.4 4.69 408 



9/1/2022 73.2 0.30 328 

10/3/2022 73.6 6.50 152 

11/1/2022 73.0 4.06 936 

12/1/2022 70.6 7.26 416 

1/4/2023 69.3 5.10 328 

2/1/2023 68.2 7.42 312 

3/6/2023 67.3 14.81 232 

4/4/2023 70.8 0.47 464 

5/3/2023 70.0 1.01 200 

6/1/2023 70.6 2.76 270 

6/30/2023 72.2 0.65 200 

8/7/2023 72.8 6.92 656 

9/1/2023 73.3 2.80 768 

10/5/2023 73.4 1.53 520 

11/1/2023 72.2 0.44 336 

12/7/2023 71.3 6.64 400 

1/4/2024 68.3 4.17 368 

2/5/2024 68.9 9.02 360 

3/5/2024 66.8 5.76 280 

 

 

 

 

 

 

 

 

 

 

 



2. Kainaliu, Island of Hawaii, guineagrass, initial cut date 5/7/2020 

Harvest date 

6/4/2020 

7/1/2020 

8/5/2020 

9/2/2020 

10/8/2020 

11/3/2020 

12/1/2020 

1/5/2021 

2/2/2021 

3/4/2021 

4/8/2021 

5/6/2021 

6/4/2021 

7/8/2021 

8/3/2021 

9/3/2021 

10/5/2021 

11/12/2021 

12/3/2021 

1/7/2022 

2/3/2022 

3/16/2022 

4/13/2022 

5/13/2022 

6/8/2022 

7/22/2022 

8/18/2022 

9/22/2022 

10/28/2022 

Air temp, °F Rain, inches Forage Yield, air-dry 
lbs. acre-1 

70.3 5.73 3647 

71.4 0.97 5342 

72.0 3.17 6311 

72.4 1.90 3576 

72.7 7.68 4065 

72.8 1.60 3898 

71.6 7.30 1961 

69.9 1.77 2109 

68.2 3.96 1452 

67.8 3.26 1482 

68.0 8.55 2223 

68.0 4.98 2020 

70.1 8.92 3155 

70.8 10.82 2521 

72.1 5.48 1856 

72.1 6.73 2123 

71.9 5.92 2532 

71.3 0.41 4152 

71.1 0.25 1725 

69.5 4.91 1828 

68.4 1.71 1536 

69.2 2.18 1556 

69.5 7.32 1400 

69.3 1.01 1727 

70.5 5.16 2488 

71.7 10.98 3216 

72.3 2.44 2190 

72.7 9.01 3076 

72.8 9.74 3211 



- - - - 

- - - - 

- - - - 

1/27/2023 68.9 0.02 1472 

4/12/2023 69.0 7.06 2256 

5/4/2023 69.6 12.06 992 

6/7/2023 70.0 13.80 2632 

6/28/2023 71.0 4.00 1560 

8/5/2023 71.9 6.56 3909 

9/6/2023 72.2 3.87 3325 

10/8/2023 72.5 3.01 2620 

11/2/2023 72.1 3.26 2123 

12/7/2023 71.2 9.48 3265 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Kainalu, Island of Molokai, guineagrass, initial cut date 7/2/2020 

Harvest date 

8/3/2020 

9/2/2020 

10/2/2020 

11/2/2020 

12/2/2020 

1/4/2021 

2/2/2021 

3/2/2021 

4/2/2021 

5/3/2021 

6/2/2021 

7/1/2021 

8/3/2021 

9/3/2021 

10/4/2021 

11/2/2021 

12/2/2021 

1/4/2022 

2/2/2022 

3/2/2022 

4/2/2022 

5/2/2022 

6/3/2022 

7/1/2022 

Air temp, °F Rain, inches Forage Yield, air-dry 
lbs. acre-1 

78.1 3.79 1259 

79.1 0.99 1022 

79.5 1.50 236 

79.3 1.94 1014 

77.2 3.38 538 

76.2 3.70 958 

74.2 6.03 610 

73.6 2.44 636 

73.1 13.10 88 

73.4 1.38 609 

75.6 1.14 674 

76.9 1.20 555 

77.3 1.50 374 

77.7 3.90 955 

77.1 2.81 1447 

76.7 1.29 536 

76.6 1.72 268 

73.8 14.10 734 

72.5 0.20 487 

72.8 0.60 275 

75.8 0.00 199 

75.2 1.38 226 

76.3 0.93 259 

77.1 1.22 330 

 

 

 

 



4. Hoolehua Plant Materials Center, Island of Molokai, guineagrass, initial cut date 9/8/2020 

Harvest date 

10/2/2020 

11/2/2020 

12/2/2020 

1/4/2021 

2/2/2021 

3/2/2021 

4/2/2021 

5/3/2021 

6/3/2021 

7/2/2021 

8/3/2021 

9/3/2021 

10/4/2021 

11/2/2021 

12/2/2021 

1/4/2022 

2/2/2022 

3/2/2022 

4/2/2022 

5/2/2022 

6/3/2022 

7/1/2022 

8/2/2022 

9/9/2022 

Air temp, °F Rain, inches Forage Yield, air-dry 
lbs. acre-1 

78.6 0.31 0 

77.9 0.78 0 

76.6 0.52 0 

74.7 1.31 16 

73.2 1.84 344 

72.2 1.59 392 

71.8 6.68 992 

72.2 0.80 280 

75.2 0.06 152 

76.6 0.05 0 

78.1 0.14 0 

77.6 0.90 0 

77.3 0.10 0 

76.1 0.07 0 

75.2 0.33 0 

72.4 5.93 656 

71.2 0.01 616 

71.6 0.72 96 

73.4 1.16 184 

74.4 0.02 0 

75.3 0.68 0 

76.8 0.03 0 

77.5 0.28 0 

78.7 1.35 0 

 

 

 

 



5. Waimea Plain, Island of Hawaii, kikuyu, initial cut date 5/6/2020 

Harvest date 

6/3/2020 

6/30/2020 

8/4/2020 

9/1/2020 

10/6/2020 

11/4/2020 

12/2/2020 

1/5/2021 

2/12/2021 

3/2/2021 

4/6/2021 

5/4/2021 

6/2/2021 

7/2/2021 

8/4/2021 

9/1/2021 

10/4/2021 

11/1/2021 

12/1/2021 

1/3/2022 

2/2/2022 

3/2/2022 

4/6/2022 

5/4/2022 

6/2/2022 

6/30/2022 

8/3/2022 

8/30/2022 

10/4/2022 

Air temp, °F Rain, inches Forage Yield, air-dry 
lbs. acre-1 

62.9 1.52 920 

63.5 0.51 296 

64.6 3.07 992 

65.1 0.70 744 

64.9 0.88 1627 

65.4 0.30 0 

63.1 1.29 856 

61.8 1.54 1200 

59.6 3.34 880 

60.2 0.67 293 

59.8 3.06 72 

59.6 1.25 616 

62.8 0.65 200 

63.0 0.63 0 

64.2 2.47 - 

64.1 1.53 2440 

63.8 0.68 0 

62.4 1.85 472 

61.9 0.79 344 

60.5 5.40 832 

59.7 0.18 768 

59.4 0.48 0 

60.9 1.63 192 

61.0 1.91 544 

61.9 1.16 160 

62.4 1.27 456 

63.9 2.31 832 

62.3 0.72 448 

65.0 0.30 32 



11/3/2022 65.4 1.29 304 

12/2/2022 62.3 2.12 320 

1/5/2023 61.1 5.03 832 

2/1/2023 60.2 0.68 608 

3/3/2023 59.9 7.07 296 

4/7/2023 62.5 1.61 832 

5/1/2023 61.7 1.03 424 

6/2/2023 61.8 1.20 984 

6/29/2023 63.0 0.25 104 

8/3/2023 64.3 2.74 616 

8/31/2023 64.1 0.52 672 

10/3/2023 64.8 0.96 320 

11/2/2023 64.0 0.59 - 

12/8/2023 62.9 3.02 792 

1/12/2024 60.1 2.93 1181 

2/5/2024 60.6 2.73 632 

3/16/2024 58.3 2.90 776 

 

 

 

 

 

 

 

 

 

 

 

 

 



6. Mana House, Island of Hawaii, kikuyu, initial cut date 1/3/2022 

Harvest date 

2/2/2022 

3/2/2022 

4/1/2022 

5/4/2022 

6/1/2022 

6/30/2022 

8/2/2022 

8/30/2022 

10/4/2022 

11/3/2022 

12/2/2022 

1/5/2023 

2/1/2023 

3/3/2023 

4/7/2023 

5/1/2023 

6/2/2023 

6/29/2023 

8/3/2023 

8/31/2023 

10/3/2023 

11/3/2023 

12/8/2023 

1/5/2024 

2/5/2024 

3/16/2024 

Air temp, °F Rain, inches Forage Yield, air-dry 
lbs. acre-1 

56.4 0.85 432 

56.0 0.64 0 

58.3 0.47 0 

58.6 1.04 0 

59.4 1.14 0 

59.9 0.90 0 

61.5 0.61 104 

62.5 1.26 0 

62.3 0.59 88 

62.6 2.37 328 

59.7 1.28 192 

58.4 4.10 160 

57.3 1.12 0 

57.5 6.73 304 

59.0 2.12 464 

58.6 1.46 96 

59.1 1.07 176 

60.1 0.50 0 

61.2 1.16 224 

62.2 0.31 368 

62.3 0.38 0 

61.9 0.35 0 

60.4 3.01 216 

57.4 1.64 310 

58.1 1.70 240 

55.5 1.73 440 

 

 



7. Hoolehua Plant Materials Center, Island of Molokai, buffelgrass, initial cut date 8/3/2020 

Harvest date 

9/3/2020 

10/2/2020 

11/2/2020 

12/2/2020 

1/4/2021 

2/2/2021 

3/2/2021 

4/2/2021 

5/3/2021 

6/3/2021 

7/2/2021 

8/3/2021 

9/3/2021 

10/4/2021 

11/2/2021 

12/2/2021 

1/4/2022 

2/2/2022 

3/2/2022 

4/2/2022 

5/2/2022 

6/2/2022 

7/2/2022 

8/2/2022 

Air temp, °F Rain, inches Forage Yield, 
lbs. acre-1 

air-dry 

79.0 0.67 0 

78.9 0.02 0 

77.4 0.50 0 

76.7 0.26 0 

74.4 1.36 40 

73.1 1.96 704 

72.3 1.61 208 

71.9 6.88 664 

72.4 0.71 120 

75.3 0.14 56 

76.6 0.05 0 

78.1 0.14 0 

77.6 0.90 0 

77.4 0.15 0 

76 0.11 0 

74.8 0.20 0 

72.5 6.70 856 

70.5 0.20 160 

71.4 0.50 0 

73.5 1.10 0 

74.6 0.00 0 

75.4 1.10 0 

76.8 0.10 0 

77.5 0.28 0 
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