Estimating the Basin Extent and Persistence of Legacy Nutrient Sources with Dynamic SPARROW

Noah M. Schmadel¹ and Dale M. Robertson²

¹ Oregon Water Science Center
² Upper Midwest Water Science Center

This information is preliminary and is subject to revision. It is being provided to meet the need for timely best science. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.

Watershed Modelling Continuum

SPARROW Water-Quality Model <u>SPA</u>tially <u>Referenced Regression on Watershed Attributes</u>

SPARROW: <u>SPA</u>tially <u>R</u>eferenced <u>R</u>egression <u>on</u> <u>W</u>atershed attributes Watershed Model

Target = Flux out = Flux in + (α_s Sources x θ_D Delivery) – θ_I Instream Decay

USGS Regional SPARROW Models

≝USGS

National Water Quality Program

Spatially Referenced Models of Streamflow and Nitrogen, Phosphorus, and Suspended-Sediment Loads in Streams of the Pacific Region of the United States

Scientific Investigations Report 2019-5112

U.S. Department of the Interior U.S. Goological Servey

<u>≊USGS</u>

National Water Quality Program

Spatially Referenced Models of Streamflow and Nitrogen, Phosphorus, and Suspended-Sediment Loads in Streams of the Southwestern United States

Scientific Investigations Report 2019-5106

U.S. Department of the Interior U.S. Geological Sarvey

≊USGS

National Water-Quality Assessment Program

Spatially Referenced Models of Streamflow and Nitrogen, Phosphorus, and Suspended Sediment Loads in Streams of the Midwestern United States

Scientific Investigations Report 2019-5114

U.S. Department of the Interior U.S. Geological Sarvey

≤USGS

National Water-Quality Program

Spatially Referenced Models of Streamflow and Nitrogen, Phosphorus, and Suspended-Sediment Loads in Streams of the Northeastern United States

Scientific Investigations Report 2019-5118

U.S. Department of the Interfer U.S. Geological Servey

∠USGS

National Water-Quality Program

Spatially Referenced Models of Streamflow and Nitrogen, Phosphorus, and Suspended-Sediment Loads in Streams in the Southeastern United States

Scientific Investigations Report 2019-5135

U.S. Department of the Interior U.S. Geological Survey

Making SPARROW dynamic unlocks predictive capabilities

Smith 2012; Schmadel et al. (2021) ERL

But we want to keep SPARROW usages

- Simple physics-guided statistical model
- Draws on nationally consistent datasets
- Multiscale: Spatially referenced
- Delivery from headwaters to estuaries

Making SPARROW dynamic unlocks predictive capabilities

Seasonal shifts in drivers cause storage accumulation and release

Seasonal shifts in drivers cause storage accumulation and release

Dynamic calibration helps identify key data and drivers

<u>Nitrogen</u>

$L_{t} = \sum_{n=1}^{N} \alpha_{n} I_{t,n} f_{I,t,n} + \alpha_{S} L_{t-1} f_{S,t}$

New mass

Old mass

Explanatory variables			
Sources			
Wastewater point sources			
Fertilizer applications			
Fixation from soybean, alfalfa			
Manure applications			
Atmospheric wet deposition			
Urban land cover			
Catchment storage			
Input land-to-water delivery			
Quickflow runoff			
NDVI			
Ratio nitrate to total inorganic N			
Small ponds			
Average overland flow distance			
Storage land-to-water delivery			
Change in runoff 🕂			
Change in NDVI			
NDVI, previous period			
Carbonate geology			
River corridor			
Lakes, reservoirs, impoundments			
Rivers, mean			
Temperature, mean centered			

Phosphorus

Explanatory variables			
Sources			
	Wastewater point sources		
	Small streams		
	Small ponds		
	Fertilizer applications		
	Manure applications		
	Geology (siliciclastic, crystalline)		
	Urban land cover		
	Catchment storage		
Land-to-water delivery			
	Quickflow runoff		
	NDVI		
	Small upland ponds		
	Average overland flow distance		
St	Storage land-to-water delivery		
	NDVI, previous period		
	Change in precipitation 🕂		
	Change in NDVI		
	Soil erodibility (K factor)		
A	Aquatic decay		
Lakes, reservoirs, impoundments			
Rivers, mean			
	Temperature, mean centered		

The contribution of storage to downstream nutrient load is significant

New mass

Old mass

<u>Uncertainty shown =</u> Timing of fertilizer and manure applications

The contribution of storage to downstream nutrient load is significant

Schmadel et al. (2021) ERL

The contribution of storage to downstream nutrient load is significant

Schmadel et al. (2021) ERL

Catchment mean transit times indicate different N and P storage processes

Schmadel et al. (2021) ERL

Improved dynamic accounting unlocks predictive capabilities

(1) What is the role of nutrient legacies from headwaters to estuaries and from **season-to-season** and **year-to-year**?

- Developing longer period models of priority basins (Illinois River Basin, Puget Sound, Upper Colorado) but the vision is CONUS
- Stakeholders: USGS Water Mission Area Integrated Water Availability National Project & Washington State Department of Ecology
- (2) The eventual goal is next-season forecasts of nutrient loads.
 - Improved parsing of N and P storage processes, but which processes?
 - New ways of accounting for dynamic river corridor processes

Thank you!

